vierecke

Vierecke – Alles was du wissen musst!

1 Stern2 Sterne3 Sterne4 Sterne5 Sterne 4,50 von 5 SterneLoading...

Du bist dir nicht ganz sicher, was Vierecke überhaupt sind und welche verschiedene Formen es gibt? Dann bist du hier genau richtig!

Hier kannst du alles rund ums Thema Vierecke lernen. Mit simplen Beispielen und Aufgaben verstehst du es garantiert.

Legen wir direkt los !

Viereck Eigenschaften

Beginnen wir mit den allgemeinen Eigenschaften von Vierecken, die du kennen solltest. Folgende Punkte treffen bei allen verschiedenen Formen zu:

  • Ein Viereck hat immer genau vier Seiten (a,b,c,d) und somit auch vier Eckpunkte (A,B,C,D)
  •  Die Seiten von Vierecken werden alphabetisch benannt
  • Es gibt immer vier Winkel (?, ?, ?, ?)
  • Die Summe aller Winkel ergibt immer 360 Grad

Vierecksarten, die 7 wichtigsten Formen

Zuallererst solltest du wissen, welche die wichtigsten Vierecksarten sind. Folgende Formen sind zu unterscheiden:

  • Das Quadrat
  • Das Rechteck
  • Das Parallelogramm
  • Das Trapez
  • Die Raute
  • Das Drachenviereck
  • Das allgemeine Viereck

Los geht’s!

Vierecke - Arten Bild

Viereck Flächeninhalt, Umfang und Formen

Vorab kannst du dir schon mal merken, dass der Umfang bei allen Vierecksarten gleich berechnet wird. Du bildest einfach die Summe aller Seitenlängen. Die Formel lautet:

Berechnung Umfang:
U = a + b + c + d

Das Quadrat

Dieses Viereck ist dir wahrscheinlich bekannt, das Quadrat. Bei dem Quadrat sind alle vier Seiten gleich lang und jeder Winkel beträgt 90 Grad. Auch die Diagonalen sind gleich lang.
Quadrat
Berechnung Quadrat Flächeninhalt:
Um den Flächeninhalt zu berechnen, rechnest du einfach Länge mal Breite.
Flächeninhalt:
A = a • b
Umfang:
U = a + b + c + d oder U = 4 • a

Beispielaufgabe Quadrat: Flächeninhalt und Umfang berechnen

Ein Quadrat hat die Seitenlängen a = b = c = d = 6 cm. Wie groß sind Flächeninhalt und Umfang des Quadrats ?

Gegebene Werte setzen wir in die Formeln ein:

Quadrat Flächeninhalt:

A = a • b
A = 6cm • 6cm
A = 36cm²

Quadrat Umfang:

U = a + b + c + d
U = 6cm + 6cm + 6cm + 6cm
U = 24 cm

Das Rechteck

Ein weiteres wichtiges Viereck ist das Rechteck. Bei einem  Rechteck sind die sich gegenüberliegenden Seiten gleich lang und parallel zueinander. Auch hier betragen alle Winkel 90 Grad. Außerdem sind die Diagonalen gleich lang.
Rechteck Bild
Berechnung Rechteck Flächeninhalt:
Hier musst du einfach die Länge mit der Breite multiplizieren
Flächeninhalt:
A = a • b
Umfang:
U = a + b + c + d

Beispielaufgabe Rechteck: Flächeninhalt und Umfang

Ein Rechteck hat die Seitenlängen a = 8 cm, b = 5 cm, c = 8 cm, d = 5 cm. Wie groß sind Flächeninhalt und Umfang des Rechtecks?

Rechteck Flächeninhalt:

A = a • b
A = 8cm • 5cm
A = 40cm²

Rechteck Umfang:

U = a + b + c + c
U = 8cm + 5cm + 8cm + 5cm
U = 26cm

Das Parallelogramm

Ein Parallelogramm besteht immer aus zwei parallelen und gleichlangen Seitenlängen. Die gegenüberliegenden Winkeln sind gleich groß. Darüber hinaus ergeben Winkel, die nebeneinander liegen, zusammen 180 Grad. Außerdem halbieren sich die Diagonalen einander.
Parallelogramm Beispiel Bild
Berechnung Parallelogramm Flächeninhalt:
Um den Flächeninhalt vom Parallelogramm zu berechnen, musst du zunächst die Höhe h herausfinden. Das machst du ganz einfach, indem du eine senkrechte Linie ziehst. Anschließend setzt du die Längen einfach in die Formel ein.
Flächeninhalt:
A = a • h
Umfang:
U = a + b + c + d oder U = 2a + 2b 

Beispielaufgabe Parallelogramm: Flächeninhalt und Umfang

Die Seitenlängen eines Parallelogramms betragen  a = 8 cm, b = 4 cm, c = 8 cm, d = 4 cm. Außerdem hat es eine Höhe h = 3,5 cm. Wie groß sind Flächeninhalt und Umfang des Parallelogramms?

Parallelogramm Flächeninhalt:

A = a • h
A = 8cm • 3,5cm
A = 28cm²

Parallelogramm Umfang: 

U = a + b + c + d
U = 8cm + 4cm + 8cm + 4cm
U = 24cm

Das Trapez

Bei einem Trapez liegen 2 Seiten parallel zueinander. Auch hier ergeben Winkel, die nebeneinander liegen, 180 Grad.

Die Diagonalen eines gleichschenkligen Trapez sind gleich lang. Ein Trapez ist dann gleichschenklig, wenn die Seiten, die die parallel zueinander liegenden Seiten miteinander verbinden, gleich lang sind.

Trapez Bild

Berechnung Trapez Flächeninhalt:
Auch hier musst du zunächst die Höhe h herausfinden, in dem du eine senkrechte Linie ziehst. Anschließend setzt du wieder alle Zahlen in die Formel ein.

Flächeninhalt:

A =( (a + c) / 2) • h

Umfang:

U = a + b + c + d

Beispielaufgabe Trapez: Flächeninhalt und Umfang

Ein Trapez hat die Seitenlängen a = 2 cm, b = 2,5 cm, c = 4 cm, d = 2,5 cm. Außerdem hat es die Höhe h = 2 cm.

Trapez Flächeninhalt:

A = ((a + c) / 2) • h
A = ((2cm + 4cm) / 2) • 2cm
A = 6cm²

Trapez Umfang:

U = a + b + c + d
U = 2cm + 2,5cm + 2cm + 2,5cm
U = 9cm

Die Raute

Eine Raute (auch Rhombus) hat die Merkmale, dass alle sich gegenüberliegenden Winkel gleich groß sind. Die benachbarten Winkel ergeben 180 Grad. Die Diagonalen (e und f) stehen senkrecht zueinander und bilden an der Schnittstelle einen rechten Winkel.
Raute Beispiel Bild
Berechnung Raute Flächeninhalt:
Du startest, in dem du die Diagonalen (e und f) ziehst. Dann musst du die Länge der Diagonalen, nur noch in die Formel einsetzen und schon hast du das Ergebnis.
Flächeninhalt:
A = ½ • e • f 
Umfang:
U = a + b + c + d oder U = 2a + 2b 

Beispielaufgabe Raute: Flächeninhalt und Umfang

Eine Raute hat die Seitenlängen a = b = c = d = 3 cm und Diagonalen e = 5 cm und f = 2,5 cm.

Raute Flächeninhalt:

A = ½ • e • f
A = ½ • 5cm • 2,5cm
A = 6,25cm²

Raute Umfang:

U = a + b + c + d
U = 3cm + 3cm + 3cm + 3cm
U = 12 cm

Das Drachenviereck

Ein Drachenviereck erkennst du daran, dass je zwei benachbarte Seiten gleichlang sind. Wichtig ist auch, dass zwei der gegenüberliegenden Winkel gleich groß sind. Zudem stehen die zwei Diagonalen ( e und f ) senkrecht zueinander.
Drachenviereck Bild
Berechnung Drachenviereck Flächeninhalt:
Um den Flächeninhalt zu berechnen ziehst du zuallererst die beiden Diagonalen. Die Länge der Diagonalen setzt du im Anschluss einfach in die Formel ein.
Flächeninhalt:
A = (e • f) / 2
Umfang:
U = a + b + c + d oder U = 2 • (a + b)

Beispielaufgabe Drachenviereck: Flächeninhalt und Umfang

Ein Drachenviereck hat die Seitenlängen a = 2 cm, b = 3 cm, c = 2 cm, d = 3 cm und Diagonalen e = 2,5 cm und f = 4 cm.

Drachenviereck Flächeninhalt:

A = (e f) / 2
A = (2,5cm 4cm) / 2
A = 5 cm²

Drachenviereck Umfang:

U = a + b + c + d
U = 2cm + 3cm + 2cm + 3cm
U = 10 cm

Das allgemeine Viereck

Bei dem allgemeinen Viereck liegt allgemein keine Symmetrie vor. Es besteht aus vier verschieden großen Seiten und vier unterschiedlich großen Winkeln. Außerdem hat es zwei Diagonalen.

Dementsprechend können diese Vierecke immer komplett unterschiedlich aussehen, sodass es keine allgemeine Formel zur Berechnung des Flächeninhaltes gibt.

allgemeines Viereck Bild

Berechnung allgemeines Viereck Flächeninhalt:

Um den Flächeninhalt zu berechnen, musst du das Viereck in die oben beschriebenen Formen teilen, um mit Hilfe dieser Formeln den Flächeninhalt zu bilden. Anschließend summierst du alle Ergebnisse.

Beispielberechnung für jede Form – jetzt bist du dran!

Versuche es jetzt einmal selbst indem du die Formeln in den folgenden Übungsaufgaben anwendest!

Wenn du die Aufgaben berechnet hast, klicke auf das + um die Lösungen zu sehen.

Beispiel Quadrat: Die Seitenlängen betragen: a = b = c = d = 5cm. Berechne den Flächeninhalt und den Umfang des Quadrats.

A = 25 cm²

U = 20cm

Beispiel Rechteck: Die Seitenlängen betragen a = 8 cm, b = 6 cm, c = 8 cm, d = 6 cm. Berechne den Flächeninhalt und den Umfang des Rechtecks.

A = 46 cm²

U = 28 cm

Beispiel Parallelogramm: Die Seitenlängen betragen a = 6 cm, b = 2 cm, c = 6 cm, d = 2 cm und die Höhe h = 1,5 cm. Berechne den Flächeninhalt und den Umfang des Parallelogramms.

A = 9 cm²

U = 16cm

Beispiel Trapez: Die Seitenlängen betragen a = 3 cm, b = 3,5 cm, c = 5 cm, d = 3,5 cm und die Höhe h = 3 cm. Berechne den Flächeninhalt und den Umfang des Trapez.

A = 4,8 cm²

U = 15 cm

Beispiel Raute: Die Seitenlängen betragen a = 4 cm, b = 4 cm, c = 4 cm, d = 4 cm und die Diagonalen e = 6 cm und f = 3,5 cm. Berechne den Flächeninhalt und den Umfang der Raute.

A = 10,5 cm²

U = 16 cm

Beispiel Drachenviereck: Die Seitenlängen betragen a = 4 cm, b = 5 cm, c = 4 cm, d = 5 cm und die Diagonalen e = 4,5 cm und f = 6 cm. Berechne den Flächeninhalt und den Umfang des Drachenvierecks.

A = 5,25 cm²

U = 18 cm

Viereck berechnen – FAQ:

Was ist ein Viereck?

Ein Viereck ist eine geometrische Figur, welche immer vier Ecken und vier Seiten hat.

Welche Vierecke gibt es?

Es gibt 6 verschiedene Arten: das Quadrat, das Rechteck, das Parallelogramm, die Raute, das Trapez und das Drachenviereck.

Welche Vierecke sind Parallelogramme?

Rechteck, Raute und Trapez sind Spezialfälle des Parallelogramms.

Ist jedes Quadrat ein Rechteck?

Ja, denn es hat vier gleich lange Seiten und vier rechte Winkel.

Was ist eine Diagonale?

Eine Diagonale ist in der Geometrie eine Strecke, die zwei gegenüberliegende Ecken miteinander verbindet.

Wir hoffen, wir konnten dir mit unserem Artikel weiterhelfen.

Du hast noch weitere Fragen? Wir haben auf alle Mathe-Kniffe eine Antwort 😉

Unser Nachhilfe-Team mit erfahrenen Studentenlehrern ist genau dafür da! Wir bieten unsere Nachhilfe deutschlandweit an, direkt bei dir Zuhause.

Gerne kannst du unser Angebot auch Online wahrnehmen, was sogar derzeit die beliebteste Option ist!

Wir haben viel Mühe in diesen Artikel gesteckt und würden uns riesig freuen, wenn du uns eine Sternebewertung sowie Feedback in den Kommentaren hinterlässt.

Vielen Dank!
1 Stern2 Sterne3 Sterne4 Sterne5 Sterne 4,50 von 5 SterneLoading...

Kommentar verfassen

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert